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Abstract 

In TAV4, the first author presented a paper describing an algorithm to perform run-time consis- 
tency checking of abstract data types specified using algebraic specifications. This algorithm lias 
subsequently been incorporated into a run-time consistency checking tool for the Anna specification 
language for Ada, and works on a subset of all possible algebraic specifications. The algorithm im- 
plementation can be considered a test oracle for algebraic specifications that performs its activities 
while the formally specified program is running. 

This paper presents empirical results on the use of this test oracle on a real-life symbol table 
implementation. Various issues that arise due to the use of algebraic specifications and the tost 
oracle are discussed. 50 different errors were introduced into the symbol table implementation. On 
testing using the oracle, 60% of the errors were detected by the oracle, 35% of the errors caused 
Ada exceptions to be raised, and the remaining 5% went undetected. These results are remarkable, 
especially since the test input was simply one sequence of symbol table operations performed by a 
typical client. 

The cases that went undetected contained errors that required very specific boundary conditions to 
be met — an indication that white box test-data generation techniques may be required to detect 
them. Hence, a combination of white-box test-data generation along with a specification based test 
oracle may be an extremely versatile combination in detecting errors. 

This paper does not address test-data generation, rather it illustrates the usefulness of algebraic 
specification based test oracles during run-time consistency checking. Run-time consistency check- 
ing should be considered a complementary approach to unit testing using generated test-data. 

Key Words and Phrases: abstract data types, algebraic specifications, Anna, oracles, run-time 
consistency checking, software testing. 
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1    Introduction 

When a program is compiled, the compiler checks it for syntactic and static semantic correctness. 
When the compiled program is run, it is checked for run-time semantic errors (by checking code 
generated by the compiler). Finally, the programmer checks that the program correctly implements 
the task on hand by comparing program runs with the specification of the task. All of these activilics 
involve checking the program for consistency with respect to some specification. 

In languages such as Pascal and Ada, compile-time consistency checking involves activities such as 
determining the type compatibility of expressions. Run-time consistency checking involves activities 
such as determining that values assigned to variables are within a specified range, and determining 
that null pointers are not dereferenced. These consistency checking rules are incorporated into the 
definition of these languages, thus making programs written in these languages more reliable. 

There is, however, a trade-off between reliability and efficiency. Many very useful specification 
constructs are not built into programming languages due to the overhead of implementing efficient 
consistency checking schemes with respect to these constructs. However, it might be useful to 
include these specification constructs into the language anyway and use them during the testing 
phase only. We have studied the problem of run-time consistency checking of programs with 
respect to a variety of specification constructs [6, 7, 8]. In [8], we present an algorithm for run-time 
consistency checking of abstract data types specified using algebraic specifications [3]. 

In this paper, we present empirical results on the use of algebraic specifications in specifying and 
testing abstract data types using the run-time consistency checking schemes we have developed. In 
Section 2, we discuss some issues involved in the writing of algebraic specifications for the purpose of 
run-time consistency checking. In Section 3, we discuss how algebraic specifications may be written 
in the specification language Anna [4] for Ada and the details of their semantics. We introduce a 
symbol table package in this section, which will be the example used throughout the rest of 1 he 
paper. Following this (Section 4), we present an overview of what constitutes algebraic specification 
checking and the details of our implementation. In Section 5, we describe some transformations on 
the symbol table package which are required to be able to use the algebraic specification checking 
algorithms on this package. We tested the comprehensiveness of algebraic specification checking 
by introducing errors in the symbol table implementation and simulating the calls made to it by a 
typical application. About 60% of the errors were detected by the algebraic specification checking 
algorithm, another 35% caused Ada exceptions to be raised, and the remaining 5% of the errors 
were not detected. Details of these results are presented in Section 6. Finally, Section 7 concludes 
this paper and discusses possible areas of future work. 

One of the interesting conclusions we make is that a combination of white-box test-data generation 
techniques in conjunction with specification based run-time consistency checking may be extremely 
versatile in detecting errors. 

Related work. There has been other work done in the area of software testing based on algebraic 
specifications. They include DAISTS [2], EQUATE [9], and ASTOOT [1]. In all of these approaches, 
algebraic specifications are used as an aid to test-data generation. Our approach does not address 
test-data generation, rather it takes the form of a test oracle [5] that monitors the execution of a 



formally specified program. The calls made to abstract data type operations by the program will, 
therefore, constitute the test data. Our approach should be considered a complementary approach 
to test-data generation. 

2    Writing and Using Algebraic Specifications for Testing Pur- 
poses 

For the purpose of this paper, an algebraic specification is a set of equations whose terms are 
comprised of the abstract data type operations and variables that are universally quantified over 
the domain of the abstract data type. An example of an algebraic specification is presented in 
Section 3. 

Algebraic specifications are a convenient way to describe the behavior of an abstract data type 
without over-constraining the implementation of the abstract data type. Also, for the purpose of 
software testing, algebraic specifications are very different from the code that forms the implement a- 
tioh — hence chances of repeating the same error in both the specification and the implementation 
is minimal. 

There are however a few problems with using algebraic specifications during program testing. We 
list some of them below along with possible solutions. 

• The general problem of algebraic specification checking is undecidable. When some set of 
sequences of abstract data type operations have been evaluated, it is necessary to perform 
proof operations to determine if these sequences result in equivalent abstract data type values. 
We must accept that algebraic specification checking can only be partial. But, as indica1<-<1 
by the results of this work and the other studies cited above, even this partial checking can 
be quite useful. 

• 

« 

To perform algebraic specification checking, the oracle must have access to an equality oper- 
ation to compare two abstract data type values. Quite often, the abstract data type may not 
define such an operation in which case it must be provided by the programmer. In addition, 
a copy operation needs to be provided in case abstract data type values need to be saved for 
use in a later comparison with another value. There does not seem to be any way out of t his 
problem. 

Testing tools based on algebraic specifications usually incorporate some kind of term rewriting 
capability. By rewriting terms into other terms, the oracle can conclude that the abstract 
data type values corresponding to these terms must be equal. If the intermediate terms in 1 lie 
rewriting process are undefined — for example, their evaluation raises an exception — t lie 
earlier conclusion about the terms being equal is wrong. That is, rewrite based systems can 
go wrong when the abstract data type operations are only partially defined. Our experience 
indicates that this problem does not occur in typical algebraic specifications, and in fact one 
can show that it does not occur in the example presented in this paper. 

• Abstract data type operations may read global state and also have side-effects on this state. 
Hence two different executions of the same operation with the same parameters may result in 



different results. This causes a problem in writing algebraic specifications for these operations. 
The Anna specification language solves this problem by formalizing the notion of a package 
state and considering this to be an implicit parameter of all package operations. The problem 
of side effects will, however, continue to exist if multiple operations can access the state 
concurrently. 

• To perform algebraic specification checking, it may often be desirable to revert the abstract 
data type back into an earlier state. For example, we may wish to re-initialize the abstract 
data type and perform a new sequence of operations. This may not be possible in some larger 
systems that are continuously running. For example, it may be impossible to revert a file 
system back to an earlier state for the purpose of testing. Although this problem does not 
arise in the example we present in this paper, it is a serious issue. 

3    Algebraic Specifications in Anna 

Anna (ANNotated Ada) is a language extension of Ada to include facilities for formally specifying 
the intended behavior of Ada programs. The primary Anna construct is the annotation, which is a 
boolean-valued constraint on the underlying Ada program. Algebraic specifications can be written 
in Anna as axiomatic annotations which appear within an Ada package interface. The following is 
the Ada package interface of a symbol table with an algebraic specification written in Anna: 

generic 
type Attribute  is private; 

package  Symbol_Table_Package  is 
procedure Initialize; 
procedure Insert(ID : String; AT: Attribute); 
procedure Replace(ID : String; New_AT: Attribute); 
procedure Search(ID :String; AT:out Attribute); 
Entry_Exists, Entry_Not_Found: exception; 

axiom 
for all S: SymbolJTable'State; 

ID1,ID2: String; 
ATI, AT2 attribute  => 

S[Insert(IDl,ATl);Insert(ID2,AT2)]  =  S[Insert(ID2, AT2);Insert(IDl, ATI)], 
S[Insert(IDl,ATl);Replace(IDl,AT2)]  =  S[Insert(IDl, AT2)], 
S[Insert(IDl,ATl);Replace(ID2,AT2)]  =  S[Replace(ID2,AT2);Insert(IDl, ATI)]; 

end  Symbol_Table_Package; 

This symbol table is a simplified form of that used in an Anna transformation tool. The original 
Anna transformation tool symbol table contained extra functionality to handle multiple levels of 
symbol tables and block structure. The above package introduces four operations Initialize, Search, 
Insert, and Replace and two exceptions Entry_Exists and Entry_Not_Found. Following this is an 
algebraic specification of the symbol table consisting of three equations. 

We have omitted other specifications for simplicity — the important ones omitted being that Insert 
will raise the exception Entry_Exists if an attempt is made to insert the same symbol more than 



once, and that Replace will raise the exception Entry_Not_Found if its symbol parameter has not 
already been inserted earlier into the symbol table. 

The equations that form the algebraic specification are quantified over all states, S, of the symbol 
table package, all strings ID1, ID2, and all attributes ATI and AT2. The first equation says that 
inserting the symbol ID1 with attribute ATI followed by inserting the symbol ID2 with attribute 
AT2 into any symbol table S is equivalent to performing these same insertions in the reverse order. 
Notice that we really want this equivalence to hold only when ID1 and ID2 are different from each 
other. However, when ID1 and ID2 are equal, both sides of the equation are undefined (they raise 
the exception Entry_Exists for they are both attempting to insert the same symbol twice). In Anna, 
the semantics of axiomatic annotations is that each equation must be true only for those values of 
the universally quantified variables for which the equation is fully defined. This partial semantics 
of Anna axiomatic annotations increases the number of situations that may be described using 
algebraic specifications. 

The second equation says that inserting a symbol with one attribute and then replacing this at- 
tribute with another is equivalent to just inserting the symbol with the second attribute. The third 
equation says that Insert's and Replace's can be ordered either way to obtain the same result. Here 
again, this is true only when their symbol parameters are different from each other, and once again 
this is what the equation states as a result of the partial semantics property. 

4    An Oracle for Anna Algebraic Specifications 

We now present an overview of the oracle we implemented to perform run-time consistency checking 
with respect to algebraic specifications. The oracle maintains the set of all abstract data type terms 
generated by the program. If the oracle can deduce that any two terms in this set are equal based 
on the algebraic specification, then the oracle performs a check to ensure that the abstract data 
type values corresponding to these terms are also equal to each other. If they turn out not to be 
equal, the program is considered to have violated its algebraic specification. The details of the 
theorem'proving algorithms used by the oracle are described in [6, 8]. 

In the symbol table package of Section 3, the abstract data type terms are sequences of symbol 
table operations starting with Initialize, and the abstract data type values are the resulting package 
states. As an example, consider the following sequence of operations on the symbol table package: 

1. Initialize; 
2. Insert("X",ATi); 
3. Insert("Y",AT2); 
4. ReplaceC'Y-.ATa); 
5. Initialize; 
6. Insert("Y",AT2); 
7. Insert("X",ATi); 
8. Replace("Y",AT2); 

There are eight terms of the symbol table abstract data type generated by the program. Terms 
generated at (1) and (5) are identical (both contain only the operation Initialize), and hence the 



package states at these points are compared by the oracle to ensure that they are equal. The terms 
generated at (3) and (7) can be proved equal using the first equation of the algebraic specification 
of the symbol table. Similarly, the term generated at (8) can be proved equal to the term general <<<1 
at (7) (and therefore also to the term generated at (3)) using the second and the third equations. 
Hence the package states at (3), (7), and (8) are compared by the oracle to ensure that they arc 
equal. 

Our oracle works on a subset of all possible abstract data types and their algebraic specifications. 
This subset is the set of all abstract data types and their algebraic specifications that satisfy I lie 
following conditions: 

• The abstract data type must be implemented as an Ada package with a trivial state — i.i.. 
the state of the package may not be read or modified by the abstract data type operations. 
One Ada type within this package must be designated as the abstract data type. In addition, 
the Ada package may designate an Ada type to be the auxiliary type. The use of the auxiliary 
type is described below. 

• The operations in the package must all be functions and are either observers (functions that 
query properties of abstract data type values) or constructors (functions that return abstract 
data type values). 

• One constructor serves as the initialization routine for abstract data type values and this may 
have at most one parameter which must be of the auxiliary type. All other constructors must 
have exactly one parameter of the abstract data type and at most one more parameter whi< li 
must be of the auxiliary type. 

• The algebraic specification may only contain constructors. 

• This is more a requirement than a subset condition — the user must provide copy and equality 
operations for the abstract data type and the auxiliary type. 

Extending the oracle subset will complicate the implementation of the oracle. So instead, we have 
defined a set of transformations that can be used to convert a large number of abstract data tyjx-s 
into the subset accepted by the oracle. This is described in the next section. 

5    Transformations on the Symbol Table Package 

Obviously, the symbol table package does not fit within the oracle subset. It implements the data 
abstraction in the package state — hence the package state is not trivial, and there is no Ada type 
designated to be the abstract data type. Also, the operations are procedures, not functions, and 
they each require two parameters — i.e., there are two auxiliary types. 

In this section we illustrate a transformation scheme using which a large number of abstract da t a 
types can be converted to fit into the oracle subset. The general scheme is shown in Figure 1 with 
respect to the symbol table abstract data type. 
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Figure 1: Transformation of Symbol Table 

The left part of this figure shows the original program — the symbol table abstract data type and 
its algebraic specification as shown in Section 3, its implementation which is shown in Appendix A, 
and the client representing the rest of the program that makes calls to the symbol table. On the 
right of the figure is the transformed program. There are now two packages, P2 and P3. P2 lias 
the same interface as that of the original package (Pi) and hence the client can continue to call 
this package without any modifications. P3 is the transformed version of the original abstract data 
type to fit into the oracle subset. The implementation of P2 simply maps calls from the client to 
P3. P3 contains the algebraic specification (which is slightly modified), and its implementation is 
nearly the same as the original implementation. This new implementation is, however, augmented 
with copy and equality operations on the abstract data type and the auxiliary type respectively, 
and is shown in Appendix B. The pragma that follows the copy and equality operations in this 
implementation indicates to the oracle that these are the operations to be used for copying and 
performing equality tests. 

The details of the transformation are omitted, and the relevant aspects are illustrated by presenting 
the interface of P3 below: 

generic 
type Attribute is private; 

package  Symbol_Table_Customized is 
type Symbol_Table is private;    — the ADT. 
type A_String is access  String; 
type Auxiliary_Type is record 

ID:A_String; 
AT: Attribute; 

end record; 
function Initialize return Symbol_Table; 
function Insert(S:Symbol_Table;IDandAT: Auxiliary_Type)  return Symbol_Table; 
function Replace(S: Symbol_Table; IDandAT: Auxiliary_Type)  return Symbol_Table; 
function Search(S:Symbol_Table;ID:String) return Attribute; 



Entry_Exists, Entry_Not_Found: exception; 
axiom 
for all S : Symbol_Table; 

IDlandATl,ID2andAT2: Auxiliary_Type  => 
Insert(Insert(S, IDlandATl),ID2andAT2) =  Insert(Insert(S, ID2andAT2),IDlandATl), 
Replace(Insert(S,IDlandATl),ID2andAT2)  =  Insert(S,ID2andAT2), 
Replace(Insert(S,IDlandATl),ID2andAT2)  =  Insert(Replace(S)ID2andAT2),IDlandATI): 

private 
type Node_Kind is  (Normal, Last); 
type Node_Rec(N: Node_Kind); 
type Symbol_Table is access  Node_Rec; 
subtype Node is  Symbol_Table; 
Block_Size: constant  := 4; 
type Node_Rec(N : Node_Kind)  is record 

ID : String(l. . Block_Size); 
LLink, RLink: Node; 
case  N  is 

when  Normal  => 
MLinkl:Node; 

when Last  => 
MLink2: Attribute; 

end  case; 
end record; 

end  Symbol_Table_Customized; 

The differences between PI and P3 are listed below: 

• Pi stores the symbol table in its state. P3 has a trivial state, but contains an Ada type 
Symbol_Table which is designated as the abstract data type. The type describing the package 
state in the original symbol table appears in the private part of P3 and describes the structure 
of Symbol_Table. 

• PI has two auxiliary types — String and Attribute. P3 contains a single auxiliary type which 
is a record with a String and a Attribute component. 

• The PI operations were all procedures. The P3 operations are functions which satisfy the 

oracle subset restrictions. 

• The algebraic specification in PI specified the effect a sequence of operations had on t he 
package state. In P3, the algebraic specification is an expression specifying the effect of 
applying the functions on symbol table values. 

There is a subtle difference between the algebraic specifications in PI and P3. In PI, the second 
equation said that an Insert followed by a Replace on the same symbol is equivalent to just an 
Insert with the parameters of Replace. In P3 the "same symbol" constraint has been omitted for it 
cannot be stated in the oracle subset. However, as a consequence of the partial semantics of Anna 
axiomatic annotations, the second equation in P3 states exactly the same constraint. In the case 



when Insert and Replace do not operate on the same symbol, it is easy to see that at least one side 
of the equation will be undefined. 

Note that the implementation of P3 can be somewhat inefficient. This inefficiency should, however. 
be acceptable during the testing phase, and in our experiments, there was no noticeable decrease 
in performance. 

6    Experimental Results 

To perform our experiment, one of the authors created a test-bed — a mainline that performed 
a sequence of calls on the symbol table package. This sequence contained 75 Initialize, Insert, and 
Replace operations with a variety of parameters. It was designed to simulate an actual use of the 
symbol table package. 

Another author independently created 50 different mutants of the symbol table implementation. 
The mutants were created by making minor modifications to the implementations of the Insert and 
Replace functions — the kind that could typically occur during the development of these functions. 
We considered only the Insert and Replace functions to introduce errors since these were the only 
ones mentioned in the algebraic specification. 

We tested each of these mutants using the algebraic specification based test oracle on the above- 
mentioned sequence of operations. The results were quite remarkable: 

• In 26 cases, the algebraic specification based test oracle detected an error. 

• In 18 cases, an Ada exception was raised, thus indicating an error. 

• Errors were detected by both the oracle and by raising Ada exceptions in 3 cases — this was 
possible because some of the Ada exceptions were being handled and so the testing process 
could continue. 

• The remaining 3 cases ran without any errors being detected. 

That is, the oracle was capable of detecting 29 errors — approximately 60% of the errors. Those 
errors would have gone undetected had we not used our oracle. 

We performed an analysis of the 3 cases in which no errors were detected. We found that the test 
input required to detect errors in these mutants would require very specific boundary conditions 
to be satisfied. This knowledge was available only in the symbol table implementation. 

This gives rise to an interesting idea for future work: If the test-data is generated using white-box 
techniques, and the tests are run in the presence of a specification based test oracle, we can ensure 
that the program runs correctly in all these cases. Chances are that all 50 errors introduced into 
the symbol table package would have been detected using this approach. We believe that this is a 
versatile approach for software testing and intend to study this in the future. 



7    Conclusions and Future Work 

Our experiment involving run-time consistency checking of abstract data types with respect to 
algebraic specifications demonstrates that our test oracle is indeed very useful in detecting errors in 
implementations of the abstract data type operations. Obviously, the abstract data type must be 
amenable to being specified using algebraic specifications, and it should be possible to transform 
it into the subset accepted by the oracle. It is also clear that our approach is a complementary 
approach to the related work cited in this paper that involve test-data generation. 

Some of the more specific conclusions we have drawn based on the experiments are: 

• We must extend the oracle subset to allow for an arbitrary number of auxiliary types. Al- 
though many examples such as the symbol.table can be transformed to fit into the oracle 
subset, there could be examples that pose problems. 

• A more rigorous error reporting scheme is required. Currently, the oracle just stops with an 
error message after highlighting the operation after which the error occurred. We also need to 
know how the oracle concluded the error — e.g., the series of relevant rewritings performed. 

• We need to study more real-life examples and carefully analyze the problem of partially 
defined operations. 

• Finally, we need to study the use of our oracle in conjunction with white-box test-data 
generation techniques. The test-data would exercise the program quite comprehensively, and 
the oracle would ensure that the program meets its specification in all these cases. 
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A    The Symbol Table Package Implementation 

package body SYMBOL_TABLE_PACKAGE is 

BLOCK_SIZE:   constant  :=  4; 
type NODE_KIND is (NORMAL, LAST); 
type NODE_REC(N: NODE_KIND); 
type NODE is Access  NODE_REC; 
type NODE_REC(N: NODE_KIND) is record 

ID :STRING(1  .. BLOCK_SIZE); 
LLINK,  RLINK:NODE; 
case N  is 

when NORMAL  => 
MLINK1: NODE; 

when LAST => 
MLINK2: ATTRIBUTE; 

end  case; 
end record; 

STATE: NODE; 
LAST_NODE_VISITED_BY_SEARCH: NODE; 

procedure INITIALIZE is 
begin 

STATE  :=  null; 
end INITIALIZE; 

procedure SEARCHED :STRING;  AT:out  ATTRIBUTE)  is 

procedure LOCAL_SEARCH(ID:STRING; NOD:NODE)  is 
FIRST:INTEGER  := IDTIRST; 
STR     :STRING(1  .. BLOCK_SIZE); 

begin 
if NOD   =  null then 

raise ENTRY_NOT_FOUND; 
elsif ID'LAST -  FIRST +  1  >=  BLOCK_SIZE  then 

STR := ID(FIRST  .. FIRST +  BLOCK_SIZE  -  1); 
if STR = NOD.ID then 

if ID'LAST =  FIRST +  BLOCK_SIZE  -  1  then 
LOCAL_SEARCH("  ", NOD.MLINK1); 

6lS6 
LOCAL_SEARCH(ID(FIRST +  BLOCK_SIZE  .. ID'LAST), 

NOD.MLINK1); 
end if; 

elsif STR <  NOD.ID then 
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LOCAL_SEARCH(ID, NOD.LLINK); 
else 

LOCAL_SEARCH(ID,  NOD.RLINK); 
end if; 

else 
STR(1  .. ID'LAST -  FIRST +  1)  := ID; 
for I in ID'LAST -  FIRST +  2  ..  BLOCK_SIZE loop 

STR(I)   :=  '  '; 
end loop; 
if STR =  NOD.ID then 

AT :=  N0D.MLINK2; 
LAST_NODE_VISITED_BY_SEARCH  :=  NOD; 

elsif STR <  NOD. ID then 
LOCAL_SEARCH(ID,  NOD.LLINK); 

else 
LOCAL_SEARCH(ID, NOD.RLINK); 

end if; 
end  if; 

end LOCAL_SEARCH; 

begin 
LAST_NODE_VISITED_BY_SEARCH  :=  null; 
LOCAL_SEARCH(ID, STATE); 

end SEARCH; 

procedure INSERTED:STRING;  AT:ATTRIBUTE)  is 
L,  M:NODE; 

procedure INSERT_REST_OF_ID(ID:STRING;  LB:INTEGER  :=   1)  is 
J: INTEGER; 
FIRST .INTEGER  := ID'FIRST; 
STR:STRING(1  ..  BLOCK_SIZE); 

begin 
for I in LB  ..  ((ID'LAST -  FIRST +  1)  / BLOCK_SIZE)  -   1  loop 

STR :=  ID(FIRST +  BLOCK_SIZE  *  I  .. 
FIRST +  BLOCK_SIZE  *  (I  +  1)  -  1); 

L.MLINK1   := new  NODE_REC'(NORMAL,  STR, null, null, null); 
L   :=  L.MLINK1; 

end loop; 
J := (ID'LAST - FIRST + 1) rem BLOCK_SIZE; 
STR(1 .. J) := ID(ID'LAST + 1 - J .. ID'LAST); 
for I in J  +  1  ..  BLOCK_SIZE loop 

STR(I)  :=  '  '; 
end loop; 
L.MLINK1  := new NODE_REC'(LAST, STR, null, null, AT); 

end INSERT_REST_OF_ID; 
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procedure LOCAL_INSERT(ID:STRING;  NOD:in out  NODE)  is 
FIRST:INTEGER  := ID'FIRST; 
STR:STRING(1   ..  BLOCK_SIZE); 

begin 
if ID'LAST -  FIRST +  1  >=  BLOCK_SIZE then 

STR := ID(FIRST  ..  FIRST +  BLOCK_SIZE  -  1); 
if STR =  NOD.ID then 

if ID'LAST =  FIRST +  BLOCK_SIZE  -  1  then 
LOCAL_INSERT("  ",  NOD.MLINK1); 

©lsG 
LOCAL_INSERT(ID(FIRST + BLOCK.SIZE  .. ID'LAST), 

NOD.MLINK1); 

end if; 
elsif STR  <   NOD.ID  then 

if NOD.LLINK  = null then 
NOD.LLINK  := new NODE_REC'(NORMAL, STR, null, null, null); 

L ■:=  NOD.LLINK; 
INSERT_REST_OF_ID(ID); 

else 
LOCAL_INSERT(ID,  NOD.LLINK); 

end if; 
else 

if NOD.RLINK  =  null then 
NOD.RLINK  :=  new  NODE_REC'(NORMAL, STR, null, null, null); 
L  :=  NOD.RLINK; 
INSERT_REST_OF_ID(ID); 

else 
LOCAL_INSERT(ID, NOD.RLINK); 

end  if; 
end if; 

61S6 
STR(1   ..  ID'LAST  -  FIRST  +   1)   :=  ID; 
for I in ID'LAST -  FIRST + 2  ..  BLOCK.SIZE loop 

STR(I)  := ' '; 
end loop; 
if STR =  NOD.ID then 

raise ENTRY_EXISTS; 
elsif STR <  NOD.ID  then 

if NOD.LLINK =  null then ♦ 
NOD.LLINK  := new NODE_REC'(LAST,  STR, null, null, AT); 

else 
LOCAL_INSERT(ID, NOD. LLINK); 

end  if; 
else 

if NOD.RLINK = null then 
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NOD.RLINK   :=  new  NODE_REC'(LAST, STR, null, null, AT); 
else 

LOCAL_INSERT(ID,  NOD.RLINK); 
end  if; 

end if; 
end if; 

end LOCAL_INSERT; 

begin 
if STATE = null then 

L  := new NODE_REC'(NORMAL,  " ", null, null, null); 
M  := L; 
INSERT_REST_OF_ID(ID, 0); 
STATE := M.MLINK1; 

else 
LOCAL_INSERT(ID, STATE); 

end if; 
end INSERT; 

procedure REPLACE(ID : STRING;  NEW_AT: ATTRIBUTE)  is 
DUMMY: ATTRIBUTE; 

begin 
SEARCHED, DUMMY); 
if LAST_NODE_VISITED_BY_SEARCH  = null then 

raise ENTRY_NOT_FOUND; 
else 

LAST_NODE_VISITED_BY_SEARCH .MLINK2  :=  NEW_AT; 
end if; 

end REPLACE; 

end SYMBOL  TABLE  PACKAGE; 
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B    The Transformed Symbol Table Package Implementation 

package body SYMBOL_TABLE_CUSTOMIZED is 

function EQUAL_SYMBOL_TABLE(X, Y:SYMBOLJTABLE)  return BOOLEAN  is  ...  ; 
function COPY_SYMBOL_TABLE(S: SYMBOLJTABLE)  return SYMBOL_TABLE is  ... 
function EQUAL_AÜXILIARY_TYPE(X,  Y: AUXILIARY_TYPE)  return BOOLEAN   is 
function COPY_AUXILIARY_TYPE(X: AUXILIARY_TYPE) 

return AUXILIARYJTYPE is  ...  ; 

pragma AXIOM_CHECKING_FUNCTIONS(EQUAL_SYMBOL_TABLE, 
COPY_SYMBOL_TABLE, 
EQUAL_AUXILIARY_TYPE, 
COPY_AUXILIARY_TYPE); 

function INITIALIZE return SYMBOLJTABLE is  ...  ; 

function SEARCHES : SYMBOLJTABLE;  ID .STRING)  return ATTRIBUTE  is        ; 

function INSERT(S : SYMBOLJTABLE; IDandAT: AUXILIARYJTYPE) 
return SYMBOLJTABLE is  ...  ; 

function REPLACE(S : SYMBOLJTABLE; IDandAT: AUXILIARYJTYPE) 
return SYMBOLJTABLE is  ...  ; 

end SYMBOL TABLE CUSTOMIZED; 
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